
Transition-Based
Dependency Parsing
Saarbrücken, December 23rd 2011

David Przybilla – davida@coli.uni-saarland.de

Outline

1. MaltParser

2. Transition Based Parsing

a. Example

b. Oracle

3. Integrating Graph and Transition Based

4. Non –Projective Dependency Parsing

MaltParser

● Different Languages (No tuning for an Specific Lang)

● Language independent: accurate parsing for a wide

variety of languages

● Accuracy between 80% and 90%

● Deterministic

Treebank MaltParser Dependency Parser

(Transition Based)

input output

Transition Based Parsing

Stack Buffer

𝑊𝑖

𝑊𝑖+1

𝑊𝑖+2

𝑊𝑘

𝑊𝑥

 ..

 ..

● Shift

● Left-arc

● Right-arc

● Reduction

Transitions

A
c
ti
o

n
s

Example

John hit the ball

Stack Buffer

John

hit

the

ball

Example

John hit the ball

Stack Buffer

John

hit

the

ball

Transition=Shift

Example

John hit the ball

Stack Buffer
John

hit

the

ball

Transition=left Arc

Subj

Only if ℎ(𝑗𝑜ℎ𝑛) = 0

Example

John hit the ball

Stack Buffer

hit

ball

Transition=Shift

Subj

the

Example

John hit the ball

Stack Buffer

hit
the

ball

Transition=Shift

Subj

Example

John hit the ball

Stack Buffer

hit

the
ball

Transition=left Arc

Subj Det

Only if ℎ(𝑡ℎ𝑒) = 0

Example

John hit the ball

Stack Buffer

hit
ball

Transition=Right Arc

Subj Det

Obj

Only if ℎ(𝑏𝑎𝑙𝑙) = 0

Example

John hit the ball

Stack Buffer

hit
ball

Subj Det

Obj

Buffer is Empty= Terminal Configuration

Transition Based Parsing

Stack Buffer

𝑊𝑖

𝑊𝑖+1

𝑊𝑖+2

𝑊𝑘

𝑊𝑥

 ..

 ..

Reduction

Stack

𝑊𝑥

 ..

 ..

Buffer

𝑊𝑖

𝑊𝑖+1

𝑊𝑖+2

𝑊𝑘

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒: 𝑊𝑥 𝑊𝑘…𝑊𝑖 𝑊𝑖+1 … .

Only if ℎ(𝑊𝑘) ≠ 0

Oracle

● Greedy Algorithm, choose a local optimal hoping it will lead
to the global optimal

● It makes Transition Based Algorithm Deterministic.

● Originally there might be more than one possible transition from
one configuration to another

● Construct the Optimal Transition sequence for the
Input Sentence

● How to Build the Oracle? Build a Classifier

Classifier

The Classifier

Classes:

● Shift

● Left-arc

● Right-arc

● Reduction

Feature Vector (Features)

● POS of words in the Buffer

and Stack

● Words themselves

● The First Word in the Stack

● The L World in the Buffer

● The current arcs in the

Graph

Results of the MaltParser

● Evaluation Metrics:

● ASU (Unlabeled Attachment Score): Proportion of Tokens assigned
the correct head

● ASL(Labeled Attachment Score): Proportion of tokens assigned with
the correct head and the correct dependency type

Results of the MaltParser

More flexible Word order

Rich Morphology

More Inflexible Word order,

‘poor’ Morphology

English

Chinese

Czech

Turkish

Danish

Dutch

Italian

Swedish

German

Goal ->
 Evaluate if Maltparser can do reasonably accurate parsing for a
wide variety of languages

Results of the MaltParser

Results of the MaltParser
● Results:

● Above 80% unlabeled dependency Accuracy (ASU) for all languages

● morphological richness and word order are the cause of variation
across languages

In General lower accuracy for languages like Czech and Turkish.

– There are more non-projective structures in those languages

● It is difficult to do Cross-Language Comparison:

– Big difference in the amount of annotated data

– existence of accurate POS Taggers..

State of the art for Italian, Swedish, Danish, Turkish

Graph Based vs Transition Based

Graph Based

● Search for Optimal Graph
(Highest Scoring Graph)

● Globally Trained(Global
Optimal)

● Limited History of Parsing
Desitions

● Less rich feature
representation

Transition Based

● Search for Optimal Graph by finding
the best transition between two
states. (Local Optimal Desitions)

● Locally Trained (configurations)

● Rich History of Parsing Desitions

● More rich feature but Error
Propagation (Greedy Alg.)

Graph Based vs Transition Based

Graph Based (MST)

● Better for Long
Dependencies

● More accurate for
dependents that are :

● Verbs

● Adjectives

● Adverbs

Transition Based(Malt)

● Better for Short dependencies

● More accurate for dependents
that are:

● Nouns

● Pronouns

Integrate Both Approaches

Integrating Graph and Transition Based

Treebank T Malt Parser Transition Based

Parser
Parsed T

● Integrate both approaches at learning time.

MST Parser

● Base MSTParser guided by Malt

Treebank T MST Parser Transition Based

Parser
Malt Parser

● Base MALTParser guided by MLT

Parsed T

Features used in the Integration

● MSTParser guided by
Malt

● Is arc (𝑖, 𝑗,∗) in 𝐺𝑚𝑎𝑙𝑡

● Is arc (𝑖, 𝑗, 𝑙) in 𝐺𝑚𝑎𝑙𝑡

● Is arc 𝑖, 𝑗,∗ 𝑛𝑜𝑡 in 𝐺𝑚𝑎𝑙𝑡

● Identity of 𝑙’ such that
𝑖, 𝑗, 𝑙′ is in 𝐺𝑚𝑎𝑙𝑡

● ..

MaltParser guided by MST

● Is arc (𝑆0, 𝐵0,∗) in 𝐺𝑚𝑠𝑡

● Is arc (𝐵0, 𝑆0,∗) in 𝐺𝑚𝑠𝑡

● Head direction of 𝐵0 in 𝐺𝑚𝑠𝑡
(left,right,root..)

● Identity of 𝑙’ such that ∗, 𝐵0, 𝑙′
is in 𝐺𝑚𝑠𝑡

𝑆0=fist element of the Stack, 𝐵0 =First element of the Buffer

Results of Integration

Asl(Correct head And Correct Label)

Results of Integration

Asl(Correct head And Correct Label)

Results of Integration

Asl(Correct head And Correct Label)

Results of Integration

● Graph-based models predict better long arcs

● Each model learn streghts from the others

● The integration actually improves accuracy

● Trying to do more chaining of systems do not
gain better accuracy

Non-Projectivity

● Some Sentences have long distance dependencies which
cannot be parsed with this algorithm

● Cause it only consider relations between neighbors words

● 25% or more of the sentences in some languages are non-
projective

● Useful for some languages with less constraints on word
order

● Harder Problem, There could be relations over unbounded
distances.

Non-Projectivity
A dependency Tree 𝑇 is Projective:

 if for every 𝐴𝑟𝑐 (𝑊𝑖 , 𝑊𝑗 , 𝑟𝑒𝑙) there is a path from 𝑊𝑖 to 𝑊𝑘 , if 𝑊𝑘

is between 𝑊𝑖 and 𝑊𝑗

From ‘Scheduled’ 𝑊2 there is an arc to 𝑊5 however there is no

way to get to 𝑊4, 𝑊3 from 𝑊2

Non-Projectivity

● Why the previous transition algorithm would not be able to
generate this tree?

Stack Buffer

is

hearing

On

…

…

‘is’ can never be reduced

‘hearing’ and ‘on’ will never

get an arc

Handling Non-Projectivity

● Add a new Transition – ’’Swap’’

Stack Buffer

𝑊𝑘

𝑊𝑖

𝑊𝑖+1
Stack Buffer

𝑊𝑘

𝑊𝑖 𝑊𝑖+1 swap

● Re-Order the initial Input Sentance

Non-Projectivity

Stack Buffer

is

hearing

On

…

…

Stack Buffer

is

..

Hearing

On

…

swap

Non-Projective Dependency Parsing

● Useful for some languages with less constraints on word
order

Theoretically

● Best case 𝑂(𝑁), , that is: no swaps

● Worst Case 𝑂(𝑁2),

Results
Non-Projective Dependency Parsing

Running Time

● Test on 5 languages(Danish, Arabic, Czech, Slovene, Turkish)

● In practice the running time is 𝑂 𝑁 .

Parsing Accuracy

● Criteria

● Attachment Score: Percentage of tokens with correct head and
dependency label

● Exact match: completely correct labeled dependency tree

Results
Non-Projective Dependency Parsing

● Systems Compared

● 𝑺𝒖= allowing Non Projective

● 𝑺𝒑 =Just Projective

● 𝑺𝒑𝒑=Handling non-Projectivity as a pos-processing

● AS: Percentage of tokens with correct head and dependency label

● EM: completely correct labeled dependency tree

Results
Non-Projective Dependency Parsing

● AS

● Performance of 𝑆𝑢 is better for for:

– Czech and Slovene more non-porjective arcs in this languages.

● In AS 𝑆𝑢 is lower than 𝑆𝑝, however the drop is not really significant

● For Arabic the results are not meaningful since there are only 11 non-
projective arcs in the whole set

● ME

● 𝑆𝑢 outperforms all other parsers.

● The positive effect of 𝑆𝑢 is dependent on the non-projectivity arcs in the
language

References

● Joakim Nivre, Jens Nilsson, Johan Hall, Atanas Chanev, Gülsen Eryigit, Sandra
Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: a language-
independent system for data-driven dependency parsing. Natural Language
Engineering, 13(1):1–41, 2007.

● Joakim Nivre and Ryan McDonald. Integrating graph-based and transition-
based dependency parsers. In Proceedings of ACL-08: HLT, pages 950–958,
Columbus, Ohio, June 2008.

● Joakim Nivre. Non-projective dependency parsing in expected linear time.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, pages 351–359, Suntec, Singapore, 2009.

● Sandra Kübler, Ryan McDonald, Joakim Nivre. Dependency Parsing, Morgan &
Claypool Publishers, 2009

